57 research outputs found

    Aging affects adaptation to sound-level statistics in human auditory cortex

    Get PDF
    Optimal perception requires efficient and adaptive neural processing of sensory input. Neurons in nonhuman mammals adapt to the statistical properties of acoustic feature distributions such that they become sensitive to sounds that are most likely to occur in the environment. However, whether human auditory responses adapt to stimulus statistical distributions and how aging affects adaptation to stimulus statistics is unknown. We used MEG to study how exposure to different distributions of sound levels affects adaptation in auditory cortex of younger (mean: 25 years; n=19) and older (mean: 64 years; n=20) adults (male and female). Participants passively listened to two sound-level distributions with different modes (either 15 or 45 dB sensation level). In a control block with long interstimulus intervals, allowing neural populations to recover from adaptation, neural response magnitudes were similar between younger and older adults. Critically, both age groups demonstrated adaptation to sound-level stimulus statistics, but adaptation was altered for older compared with younger people: in the older group, neural responses continued to be sensitive to sound level under conditions in which responses were fully adapted in the younger group. The lack of full adaptation to the statistics of the sensory environment may be a physiological mechanism underlying the known difficulty that older adults have with filtering out irrelevant sensory information

    A neural signature of regularity in sound is reduced in older adults

    Get PDF
    Sensitivity to repetitions in sound amplitude and frequency is crucial for sound perception. As with other aspects of sound processing, sensitivity to such patterns may change with age, and may help explain some age-related changes in hearing such as segregating speech from background sound. We recorded magnetoencephalography to characterize differences in the processing of sound patterns between younger and older adults. We presented tone sequences that either contained a pattern (made of a repeated set of tones) or did not contain a pattern. We show that auditory cortex in older, compared to younger, adults is hyperresponsive to sound onsets, but that sustained neural activity in auditory cortex, indexing the processing of a sound pattern, is reduced. Hence, the sensitivity of neural populations in auditory cortex fundamentally differs between younger and older individuals, overresponding to sound onsets, while underresponding to patterns in sounds. This may help to explain some age-related changes in hearing such as increased sensitivity to distracting sounds and difficulties tracking speech in the presence of other sound

    Neuromagnetic evidence that differences in verb and noun processing are modulated by the presence of a syntactic context

    Get PDF
    We investigated the hypothesis that differences in the processing of verbs and nouns are modulated by the presence or absence of a syntactic context. When presented in isolation, no word category differences were observed over the left hemisphere. Verbs elicited slightly stronger magnetic fields than nouns over the right hemisphere. When presented in a minimal syntactic context, nouns elicited stronger fields than verbs over left posterior temporal regions (as indicated by root mean square signals and brain surface current density maps). Analysis of BSCD maps also indicated that verbs in context elicit stronger responses than nouns over left anterior regions

    Aging is associated with an over-sensitivity of brain responses to sounds

    Get PDF
    Aging and hearing loss leads to increased neural responses to sounds in the auditory cortex compared to younger people. Enhanced neural activity to sound may be a physiological mechanism underlying the difficulty that older adults have with ignoring irrelevant sound information.https://ir.lib.uwo.ca/brainscanresearchsummaries/1002/thumbnail.jp

    Digital filter design for electrophysiological data: a practical approach

    Get PDF
    Background: Filtering is a ubiquitous step in the preprocessing of electroencephalographic (EEG) and magnetoencephalographic (MEG) data. Besides the intended effect of the attenuation of signal components considered as noise, filtering can also result in various unintended adverse filter effects (distortions such as smoothing) and filter artifacts. Method: We give some practical guidelines for the evaluation of filter responses (impulse and frequency response) and the selection of filter types (high-pass/low-pass/band-pass/band stop; finite/infinite impulse response, FIR/IIR) and filter parameters (cutoff frequencies, filter order and roll-off, ripple, delay and causality) to optimize signal to-noise ratio and avoid or reduce signal distortions for selected electrophysiological applications. Results: Various filter implementations in common electrophysiology software packages are introduced and discussed. Resulting filter responses are compared and evaluated. Conclusion: We present strategies for recognizing common adverse filter effects and filter artifacts and demonstrate them in practical examples. Best practices and recommendations for the selection and reporting of filter parameters, limitations, and alternatives to filtering are discussed

    Representation of Perceptual Evidence in the Human Brain Assessed by Fast, Within-Trial Dynamic Stimuli

    Get PDF
    Bitzer S, Park H, Maess B, von Kriegstein K, Kiebel SJ. Representation of Perceptual Evidence in the Human Brain Assessed by Fast, Within-Trial Dynamic Stimuli. Frontiers in Human Neuroscience. 2020;14: 9.In perceptual decision making the brain extracts and accumulates decision evidence from a stimulus over time and eventually makes a decision based on the accumulated evidence. Several characteristics of this process have been observed in human electrophysiological experiments, especially an average build-up of motor-related signals supposedly reflecting accumulated evidence, when averaged across trials. Another recently established approach to investigate the representation of decision evidence in brain signals is to correlate the within-trial fluctuations of decision evidence with the measured signals. We here report results of this approach for a two-alternative forced choice reaction time experiment measured using magnetoencephalography (MEG) recordings. Our results show: (1) that decision evidence is most strongly represented in the MEG signals in three consecutive phases and (2) that posterior cingulate cortex is involved most consistently, among all brain areas, in all three of the identified phases. As most previous work on perceptual decision making in the brain has focused on parietal and motor areas, our findings therefore suggest that the role of the posterior cingulate cortex in perceptual decision making may be currently underestimated

    Memory-matches evoke human gamma-responses

    Get PDF
    BACKGROUND: Human brain activity in the gamma frequency range has been shown to be a correlate of numerous cognitive functions like attention, perception and memory access. More specifically, gamma activity has been found to be enhanced when stimuli are stored in or match with short-term memory (STM). We tested the hypothesis that gamma activity is also evoked when stimuli match representations in long-term-memory (LTM). EEG was recorded from 13 subjects performing a choice reaction task. Visual stimuli were either known real-world objects with a memory representation or novel configurations never seen before. RESULTS: All stimuli evoked an early gamma response which was maximal over occipital electrodes. This evoked gamma activity was significantly larger for items that matched memory templates. CONCLUSIONS: Therefore, we argue that gamma activity results from the feedback from memory into perception systems. This assumption seems to be true for STM as well as LTM

    Gamma and Beta Oscillations in Human MEG Encode the Contents of Vibrotactile Working Memory

    Get PDF
    Ample evidence suggests that oscillations in the beta band represent quantitative information about somatosensory features during stimulus retention. Visual and auditory working memory (WM) research, on the other hand, has indicated a predominant role of gamma oscillations for active WM processing. Here we reconciled these findings by recording whole-head magnetoencephalography during a vibrotactile frequency comparison task. A Braille stimulator presented healthy subjects with a vibration to the left fingertip that was retained in WM for comparison with a second stimulus presented after a short delay. During this retention interval spectral power in the beta band from the right intraparietal sulcus and inferior frontal gyrus (IFG) monotonically increased with the to-be-remembered vibrotactile frequency. In contrast, induced gamma power showed the inverse of this pattern and decreased with higher stimulus frequency in the right IFG. Together, these results expand the previously established role of beta oscillations for somatosensory WM to the gamma band and give further evidence that quantitative information may be processed in a fronto-parietal network

    Cingulate and cerebellar beta oscillations are engaged in the acquisition of auditory‐motor sequences

    Get PDF
    Singing, music performance, and speech rely on the retrieval of complex sounds, which are generated by the corresponding actions and are organized into sequences. It is crucial in these forms of behavior that the serial organization (i.e., order) of both the actions and associated sounds be monitored and learned. To investigate the neural processes involved in the monitoring of serial order during the initial learning of sensorimotor sequences, we performed magnetoencephalographic recordings while participants explicitly learned short piano sequences under the effect of occasional alterations of auditory feedback (AAF). The main result was a prominent and selective modulation of beta (13–30 Hz) oscillations in cingulate and cerebellar regions during the processing of AAF that simulated serial order errors. Furthermore, the AAF-induced modulation of beta oscillations was associated with higher error rates, reflecting compensatory changes in sequence planning. This suggests that cingulate and cerebellar beta oscillations play a role in tracking serial order during initial sensorimotor learning and in updating the mapping of the sensorimotor representations. The findings support the notion that the modulation of beta oscillations is a candidate mechanism for the integration of sequential motor and auditory information during an early stage of skill acquisition in music performance. This has potential implications for singing and speech
    corecore